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A Dynamical Model for the Onset of
Magnetospheric Substorms

1. INTRODUCTION

The purpose of this paper is to develop a dynamical model for the onset of
magnetospheric substorms based on experimental observations by Pytte et al. .
We require this model to contain: (1) a '"triggering' mechanism that is related
to the compression of the plasma sheet; (2) a merging process which is governed
by magnetic (current) fluctuations; and (3) a mechanism that explains multiple
onsets. i

Present steady-state merging theories fall into two general categories:

(1) self-consistency conditions between the convected particles and the crosstail
current (Alfven, 2 and besslers), and (2) dissipation models for the conversion of
magnetic energy into joule heating (Sweet, = Parker, 5 and Coppi and Friedlands).
An cxecellent review article by Vasyliunas also treats the standing shock theory of
Petschek. ’

Approach: The behavior of the plasma sheet is governed by the relative values
of the mean collision time, the proton gyro-period and the characteristic transit
time of the J X B force. The latter will be explained in detail later. We first
assume and then show, that if the mean proton collision time is sufficiently long
S————

(Received for publication 11 December 1978)

Due to the number of references to be included as footnotes on this page, the
reader is referred to the list of references, page 31,
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that a finite number of protons can travel across the plasma sheet without being
diverted by collisions. These protons are simply responding to the J X B force.

With the magnetic field measurements of Bowling and Wolf, . the J X B equa-
tion of force turns out to be that of a harmonic oscillator. It is shown that in
order for the harmonic component to be significant that nt 2 <8.1X 1015 protons/
em. Fornx~0.3 protons/cms, this condition is satisfied if the north-south
thickness of the plasma sheet, £, is less than 1634 km. Thus compression of the
plasma sheet by the tail lobes enhances the harmonic component. This in turn is
identified as a time-dependent "triggering" mechanism. An individual particle
treatment given in Appendix A leads to a similar conclusion.

In Section 3, the effects of a localized interruption of the cross-tail current
are analyzed. If the interrupticn occurs near the neutral sheet, then symmetric
magnetic field line deformations will occur at the plasma sheet-tail lobe interfaces.
If the harmonic oscillator triggering mechanism is przsent, the deformed magnetic
field lines may merge. It is found that one of the necessary conditions for the
process is related to and thus controlled by the daytime merging rate.

In Section 4, we develop a simple dynamical model for multiple onsets, Force
constants for the tail lobes are derived by treating transverse compressional waves
as being equivalent to a density of harmonic oscillators. These force constants,
coupled to that of the simple harmonic component in the plasma sheet (Section 2),
represent a three-oscillator system. The eigenmodes of this system are derived
in the standard fashion. One of the four possible eigenmodes corresponds to a
displacement of both tail lobes towards the neutral sheet. It is this mode one
expects to be excited during magnetic substorms. The corresponding eigenperiod
is a sensitive measure of the simple harmonic oscillator component in the plasma
sheet (Section 2) and of the mean proton collision frequency.

The physical picture of a substorm according to this model is as follows:
Simultaneous displacement of both tail lobes towards the neutral sheet compresses
the plasma sheet. When this compression is sufficiently intense, a harmonic com-
ponent can then be maintained across the neutral sheet. This component allows
sporadic merging to occur where the merging rate is controlled by the magnetic
noise power density spectrum and the value of B in the tail lobes. Upon expansion
of the plasma sheet, the harmonic component cannot be maintained and merging
stops. This process is repeated periodically until enhanced turbulence daraps all
coherent (oscillatory) motion,

B-Field Data: The two-component steady-state and time-dependent model is
supported by magnetic field data taken in the plasma sheet from Explorer 34

9. Bowling, S.B., and Wolf, R. A. (1974) The motion and magnetic structure of
the plasma sheet near 30 Rg. Planet. Space Sci. 22:673.
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(Bowling and Wolf9 ). Bowling and Wolf9 showed that the average x-component of
the tail magnetic field varied linearly on either side of the neutral sheet. In con-

10 showed the significant presence of ULF magnetic fluctuations over

trast, Garrett
short time-scales using the same data. In this paper we take the point of view
that the averaged, linear B-field acts on the protons mentioned above. This leads
to the harmonic particle component. The ULF fluctuations are considered to be
caused either by the sporadic merging as described in Section 3 or by the oscilla-
tion modes described in Section 4.

Definitions: The plasma sheet is taken to be the region in the earth's geo-
magnetic tail that lies above and below the neutral sheet and is characterized by
a magnetic depression (Garrettlo). The neutral sheet is defined to be the z = 0
plane where Bx reverses sign. F.‘or purposes of this paper, we take the plasma
sheet and the current-carrying region to be the same.

Coordinate System Used: The positive x-axis points away from the earth.
The positive y-axis points toward dawn and the positive z-axis points northward.

2. THE PLASMA SHEET

The plasma sheet is considered to be a dynamic, turbulent medium. The
dynamic components average out over long periods of time to steady-state values,
However, over shorter time-scales the dynamic behavior has profound effects.
First, we examine the steady-state component and determine the time-scales of
interest. Then a macroscopic time-dependent component is examined and con-
ditioned for its presence deduced.

The Steady-State: The basic steady-state equations are (&)itzeru):
i

VP = T X B (1)
= e gl

E+V/‘XB‘"J+'ﬁvpi (2)

where P is the particle pressure, n the resistivity, and n the particle number
density.

The current density required to maintain (1) can be obtained simply by taking
the cross product of B

10. Garrett, H.B. (1973) ULF magnetic fluctuations in the plasma sheet as

recorded by the Explorer 34 satellite, J. Geophys. Res. 78:3799.

11. Spitzer, Lyman, Jr. (1956) Physics of Fully Ionized Gases, Interscience
Pub




B X VP

4 = c (3)
': L B2
¢
‘ We assume the B-field components inside the plasma sheet to be
i
B, - By =0
7
and
2B z
B et (4)

The latter is based on the measurements of Bowling and Wolf. ¢ Here B0 is the
x magnetic field intensity in the tail lobes and £ the thickness of the plasma sheet
in the z direction. Equation (1) can be written in the more usual form

2
W - -v (%) (5)

Inserting (5) into (3) using (4) yields

cBo

Jy o 27‘ (6)

which, of course, can be directly obtained from the Biot-Savart law.
From (1) and (2), the resistivity is near the neutral sheet

'
3 5 g miV
P n-= Ey/Jy 5 nez (7

Here y is the collision frequency and m. instead of m, is used because protons
carry most of the current (Hones et all?),
The resistivity, therefore, is a sensitive measure of proton scattering by

E;__ turbulence (Akhiezer et a113). For illustrations we choose B0 =10y, n = 0.3 cm'3

£=2.3R and E ~ 1075 volts/m. Under these quiet-time conditions

12, Hones, Jr., E.W., Bame, S.J., and Asbridge, J.R. (1976) Proton flow
measurements in the magnetotail plasma sheet made with Imp 6,
J. Geophys. Res. 81:227. .

..}‘ 13. Akhiezer, A.I., and Akhiezer, I.A. (1975) Plasma Electrodynamics Volume
‘ 2: Non-linear Theory and Fluctuations, Pergamon Press, Inc., New York.
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v >~ 0. 04 collisions/sec (8)

T =1/y = 25 sec

For comparable dlsturbed conditions we take B ~ 10y, n>~ 0.3 cm's,
£ >~ 1500 km and Ey %107 V/m. In this case
j. = 10.6 na/m2
y
v >~ 0.9 collisions/sec (9)

Equations (8) and (9) give time-scales within which a coherent time-dependent
component can exist before being dissipated by turbulence. The effective electron-
ion colhslon frequency associated with ion-acoustic turbulence is ~0.4 T /T
(Blskamp ) for the disturbed conditions given above. This is on the same order
as (9).

Time-Dependent Behavior: In Appendix A we have solved the Lorentz equation
exactly in the limit of zero electric field. This limit is considered appropriate

since E-field acceleration should be small between individual collisions. The
exact solutions take the form of Jacobi elliptic functions which are well defined in
standard texts of Mathematical Physics. As shown in Appendix A and Figure A1,
the topology of individual particle trajectories is dependent on the numerical value
of the modulus associated with the Jacobi functions. The particle energy (Ecp) that
corresponds to the modulus -squared equal to one divides particle trajectories into
two main groups; those of lower energy that do not cross the neutral sheet and
those of higher energy that do. The critical energy, Ecp'
their turning points on the plasma sheet boundaries is given by

for particles that have

- m 2,2
Eep = 128 Yo ! | T : S (10)

14, Biskamp, D. (1973) Collisionless shock waves in plasmas, Nucl. Fusion
13:719,

11
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where w L Bo /mc is the gyrofrequency and m the particles mass. In Appen-
dix A it is shown that for protons Ecp > kT when £ >~ 2.3 Re, kT = 2 keV and that
E cp <« KT when f ~1500 km. In other words, the Lorentz equation predicts that
the majority of protons will follow trajectories as shown in Figure Ald. rather
that those in Figure Ala. as the plasma sheet is compressed. The trajectory
shown in Figure Ald. is harmonic and it is the turning on and off of this harmonic
motion as the plasma sheet contracts and expands that regulates substorm activity.

The periodicity of the north-south proton motion is directly found by setting
the first argument in the Jacobi function cn (see Eq. (A7) to 4K. (This particular
Jacobi function has, by definition, a period of 4K in the first argument.) Here K
is the complete elliptic integral of the first kind. The result is

3 2K (k (11)
v 1/2
Bo
24
where V is the proton's velocity, k2 = zfn wc/2V £ and 2 the distance of the

particle's turning point from the neutral sheet. The complete elliptic integral of
the first kind becomes singular as k2 - 1, which corresponds to the case shown
in Figure Alb.

Now let us develop an equivalent fluid representation of the single-particle
motion shown in Figure Ald. In the cold plasma limit and in the absence of bulk
flow the fluid equation of motion is

2
iXB=-v (1,?—,,) (12)

©

QJIQ?
o NO
o=

This equation implicitly assumes that the cold protons are the sole source of B.
For the field specified in Eq. (4), Eq. (12) also reduces to that of a harmonic

oscillator
5 3(2, 2
pz=-—Ez=-wz (13)
e
where
S48
W = T VA
3
VA = BO/J41p (14)

12




The solution for a fluid element starting at z = z | with zero initial velocity in the

Z-direction is

z =z coswt (15)

If Eq. (14) is to represent the same dynamics as Eq. (11), then a correction term
must be applied to account for the singular behavior of K. This correction term
is

o' < KW (18
such that w' -w, K -7/2, as k - 0. The case k - 0 is the large velocity limit.
The condition that Eq. (16) is an alternate fluid representation of the single-
proton harmonic motion shown in Eq. (11) is

T'=27/w' =7 (17)
which reduces to
j = nev = cB_/2m (18)

Equation (18) may be stated in terms of a theorem. If the current density in
the plasma sheet is taken as nev where n is the proton number density and v the
total mean velocity in the Z - Y, plane then the time-dependent cold plasma equa-
tion of motion will be that of an oscillator with a period in the Z (north-south)
direction which is equivalent to that obtained by an exact solution of the Lorentz
equation. The physical picture of an ensemble of protons moving with random
phase throughout the plasma sheet can be replaced by a continuum or field of inde-
pendent harmonic oscillators (Henley and Thirringls) as defined by the cold plasma
Eq. (13). This is the equivalent, time-dependent fluid representation of the single-
particle motion in phase space. When averaged over a surface element, both
treatments lead to the same result since they have identical dynamical properties.

The physical significance of the cold plasma approach can be considered as
follows: Introduce a finite collision frequency into the above treatment. Over long
time periods the single particle motion will be averaged or washed out by collisions.
However, let us consider shorter time scales. The number of expected collisions
over a given time scale follows Poisson statistics so that the number of protons

15. Henley, E.M., and Thirring, W. (1962) Elementary Quantum Field Theory,
McGraw-Hill Book Co., Inc.




that do not collide increases exponentially as the time interval decreases. Even-
tually, one reaches a limit where the cold plasma equations are valid. In the
present case, the cold equations need only be valid over the time interval required
for a proton to cross the plasma sheet in the z-direction. For Bo = 30y,
£ = 1500 km, E = 5.0 keV this is ~2 sec (Eq. (11)) which is comparable to the
estimated mean collision time of ~ 1 sec (Eq. (9)).

The protons in this picture can be considered test particles (Akhiezer and

Akhiezerla) that are scattered by plasma fluctuations generated by collective
phenomenon. The combined effects of all such generated phenomena is incorporated

in the numerical value of the collision frequency, v. A finite v introduces a

} Langevin collision term on the right-hand side of the Boltzmann equation which
implies a net momentum transfer from protons to electrons via plasma fluctua-
tions. With such a term, Eq. (13) becomes the well-known equation for a damped
oscillator. Thus, the importance of single particle motion in controlling the
dynamics of the tail is modulated by the degree of plasma turbulence generated by
instabilities. In Section 4 we show that for critical damping (w = v/2), there will
be a rapid heating of electrons near the neutral sheet at a ra\te~(B0 /8MV A

We now derive a simple criteria for the presence of the harmonic motion
across the neutral sheet. Consider the particles as having two independent oscil-
latory modes: one being the usual gyromotion represented by We and the other
being the north-south harmonic motion represented by w. The north-south compo-
nent will dominate when

w20 =1/2 0, (19)

which reduces to
2 15
n” < 8,15 X 10" proton/cm (20)
For a nominal density of 0.3 cm3

1 = 1634 km

As in the single-particle treatment, a decrease in { is required to trigger the

north-south harmonic motion. Based on the above, we use ~1500 km as a nominal
value for the plasma sheet thickness during onsets.

Equilibrium Distribution of the Harmonic Component: The tir:e-dependent
component, because of its oscillator properties, can lead to a steady-state dis-
tribution. For any oscillator one may eliminate the independent variable t from

it e ik e
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the (z, z) equations. Then an observer at coordinate point z will measure a
density n (z, z m) from protons originating at Z . That is:

const. const, (21)

n(z, z ) = = :_____7—
m 5 w(zfn_zz)lz

Now only protons with turning points greater than z can pass through z. There-

fore,

1/2 . 1/2
n'(z) = f n(z, z )dz = g%xs_t. (—14—- 22)

z

(22)

1/2
f n' (z) dz = ant /2
o

where v is defined in (14). This leads to an enhanced density at z = 0 relative to
that at z = +£ /2. The integration of n' over z from O to £ /2 determines the con-
stant. This constant is equalto 4onw/4T™ where n = 0.3 cm™3 and o is defined by
(24).

Multiple Onsets: Consider a localized impulse imparted to the external
boundary of the north tail lobe. This impulse will propagate through the tail lobe

via a compressional wave as described in Section 4. Upon reaching the plasma
sheet boundary, it will impart additional energy to protons just turning at the
interface (see Figure Ald.). These protons will, if not scattered, transfer the
impulse to the opposite tail lobe boundary. The presence of the north-south har-
monic motion, therefore, will dynamically couple the two lobes and the entire tail
will respond as a urnit. Any slowing down or scattering of the coherent protons
would, of course, prevent them reaching the opposite boundary and, hence, the
coupling would be broken.

The probability that a proton will not suffer a collision during a time interval,
t, is given by the Poisson distribution,

p(0, yt) = eVt (23)

Returning to the fluid picture where the harmonic motion is represented by a
field or continuum of independent oscillators the fractional number of these oscil-

lators that are undamped during a half-period is given by e'w/“". The effective

15




oscillator strength of the plasma sheet in terms of ability to coherently transfer
information from one boundary to the other is therefore given by

Kp = w2 /0 | 2 (24)

The parameter, KF' is the equivalent spring constant of the plasma sheet. In
Section 4 an equivalent constant will be derived for the tail lobes. The eigenmodes
of such a system are then examined in terms of multiple onsets. The periodicity
of the onsets is modulated by v through Eq. (24).

But first in Section 3 we derive a theory for merging based on magnetic insta-
bilities that are generated by localized currents. These localized currents are
presumed generated by particle motion such as shown in Figure Alb. This motion
is also significant when the plasma sheet is sufficiently compressed.

3. MERGING

In the previous section, it was shown that a transverse harmonic component
can exist if the plasma sheet is sufficiently compressed. In the present section,
we derive a theory showing it is possible to have direct field line merging if the
magnetic instabilities are large enough. This direct merging is advanced as an
explanation for the sporadic reconnection at maximum compression reported by
Pytte et al. 2 Energy conservation is also discussed.

What is meant by direct merging is shown in Figure 1. A localized current
fluctuation causes deformation of the field lines on the plasma sheet boundaries.
As these field lines convect into the plasma sheet they become statically unstable.
It is argued that if (19) is satisfied then the motion of the attached electrons can
cause these field lines to uniformly and smoothly connect across the x-axis and
merge into two separate field lines. Criteria for this process to occur is derived.

This problem is approached by determining consistency conditions on the de-
formation itself. The corresponding B-field inside the plasma sheet is then de-
rived. We assume that in the vicinity of the deformation that B is a weak function
of Z. That is:

@
o

9B

X Z
z =9z =0 (25)

o

which implies from the constraint v+ B = 0 that

an
ik 0 or By = const. = -B_ (26)

16
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The z-component is then determined directly from the slope of the deformation

B, =B, fr(x) (27)
Equations (26) and (27) represent the simplest form for a B-field line next to that
for a uniform field. We now build a theory assuming that (26) and (27) properly
describe the deformations. Equation (27) suggests that current fluctuations add
B-field energy to the deformation through the creation of a Bz component,

DIRECT MERGING BY CURRENT FLUCTUATIONS

Figure 1. A Schematic Representation of the Earth's Magnetotail. The solid lines
show the tail lobe field lines being deformed by a localized interruption of the
cross-tail current near z = 0 (see text). The dotted lines represent the connected
field lines inside the plasma sheet. Merged field lines are represented by the
dash-dot-dash lines

B-field Lines Inside the Plasma Sheet. The stresses acting on the deforma-
tion have opposing x-components (Figure 1). This fact, together with
Bx (x = 0) < BO in the plasma sheet, implies that the convected field lines will con-
tinue to deform and stretch. We assume that these field lines will be closely
approximated by a family of field lines that (1) join smoothly to the deformation
(2) are divergence free and (3) are symmetric about the x-axis.

The simplest form for B, which satisfies the boundary condition at z = £(x)/2
is




B z
- o =
B = B o0 2(x) = R 2f(x) (28)

where £(x) is the separation between the plasma sheet boundaries in the region of
the deformation. The parameter 10 denotes the minimum separation at x = 0.
The z-component of B is assumed to have the functional form.

B,(x, z) = -Bof'(x) g(x, z) (29)

where g(x, z) is to be determined subject to the constraint g(z = £(x)/2) = 1. Using
(28) and (29) v+ B = 0 implies

g2 =—:% (30)

which upon integrating yields

2
g(x, z) =_Z_Z? +1/2 (31)
1

The factor of 1/2 comes from the boundary condition at the deformation. The Bz
component is, therefore,

B,(x,2) = -[22%/4% + 1/2] B_f(x) (32)

The point is that as z - 0, Bx - 0, however, B ¥ does not vanish at z = 0 but
has a spectrum of values depending on the steepness of the deformation. It is
argued that the convected field lines originating with deformations on opposite
sides of the neutral sheet may join by superposition to form a new family of field-
lines; one set earthward and the other tailward of the merging point (see Figure 1).

Merged Field Lines: The simplest form for a merged field (Eastwoodl 6) is

Bx = =2 Bo z/1 133)
Bz =t Bzi = const.
B _=0

y

16. Eastwood, J.W. (1973) Consistency of fields and particle motion in the
""Speiser'' model of the current sheet, Planet. Space Sci. 22:1555.

18
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The shape of the field lines is determined by

gz g 2BB zz -
e zi
B 22

xX=x_ -+
(] Bzil

That is, a parabolic shape about the x-axis. Now in the region of the deformation
an analysis similar to (31) is carried out except now the boundary condition on B,
is

Bz(z =0) = -B,; g (35)
where Bzi is the residual value of B, (Bowling and Wolf, v and Behannon”). This
leads to

2
=5 2
B,(x,2) = [ZBOE' 3 + Bzi:] (36)

Outside the deformed region where f'(x) = o Eq. (36) reduces to (33).
At some point x, Eq. (32) will be indistinguishable from (36) if

Bof' (x)

2 (37)

& le
In this case the B-field components of a field line originating on the deformations
will be the same as those of a merged field line. Since the values of f' varies
from o at the bottom of the deformation to some maximum value, f'm, at the
inflection point then (37) can be expressed as the inequality.

2B,

n > (38)
m Bo

Let us refer to Figure 2 for the physical implications of this result. Assume
there exists a power density spectrum for magnetic fluctuations as a function of
r'm. This is represented by the curve on the left-hand side of the figure. Quiet

17. Behu;l;on, K. W. (1970) Geometry of the geomagnetic tail, J. Geophys. Res.
74:743.




ASSUMPTION: THERE EXISTS A POWER DENSITY SPECTRUM / FOR
MAGNETIC FLUCTUATIONS AS A FUNCTION f,

N_<__ INFLECTION PT. f's £
@ (0) 28y

B;.

l=27

S @ Bo =16y f,2025

Bo 10y fy 2040

Figure 2. Assumption: There Exists a Power Density Spectrum for Magnetic
Fluctuations as a Function f},. (a) A typical magnetic instability (deformation).
The maximum slope, f},, is at the inflection point; (b) A hypothetical power spec-
trum as a function of f}; (c) An idealized model showing how merging on the day

side causes B to increase, thereby decreasing the threshold at which merging
occurs

time conditions are represented by point B. As merging increases on the dayside,
B0 increases in the tail lobes, therefore, decreasing the threshold value of r;n at
which merging can take place. This is denoted by point A. In this manner the
nightside merging rate is controlled by the dayside rate. The process is very
analogous to a variable threshold discriminator where the threshold is regulated
by the dayside merging rate through Bo. An increase in B, would decrease the
merging rate, thereby allowing the temporary build-up of magnetic energy in the
tail lobes.

Current Fluctuations: Taking the curl of the components as defined in expres-

sions (28) and (32), it is found that in the region of the deformation that the current
density is




cB 2 cB 2
ig(%,2) = - o7p [1 + izz- r'2:| +g I [1 + 5—"‘2-] (39)
] ’

Atx=0, z=0, f' =0 and f" (o) is equal to the curvature K of the field line at
the boundary so that

cBo cBo
Jy(o, o) = -??I-; t T K (40)

The current density is positive if the curvature of the deformation is large enough.

K =4/t (41)

Alternatively the presence of a positive flowing current implies positive curvature.
A positive flowing current fluctuation is supplied by the single particle motion
described in Appendix A and in Figure Alb.

Energy Conservation. The acceleration of plasma by the relaxation of the
merged field lines will now be derived. It is shown that the magnetic energy is con-

verted into plasma kinetic energy. For simplicity, we assume Bz = Bzi through-
out the plasma sheet where B, points northward earthward of the merging region
and southward tailward of the region. The Bx component is taken as shown in

(33). In that case, it was shown that the merged field lines have a parabolic shape.
The orthogonal plasma trajectories are determined by

B_.t
dx _ zi
dz © " 7B_z (42)
o
which can be integrated and solved for z.
ZBO
z =z exp | - B, ! (x - xi) (43)

The accelerated plasma asymptotically approaches the x-axis as x - .
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Energy conservation requires,
X, 2
. T, | ;
1/2p 2 -vD) = ¢ f (, X B)-ds, (44)

i Z:s
xl.’ 1

where i-subscripts denote initial values and ds 1 is the element of length perpen-

d;cular to B. Now

cBo
(2 = const.)
2 2 22 e
B - (Bzi + 482 -;2—) (45)
B
ds =-—=S—dz (46)
1 Bx

Inserting the defined variables from (45) and (46) into (44), one finds

2 2
X, 2 B,
1/2p v - viz) = - 8—1’: - _4le In z/z 47
X5,z

Using (43), we find the second term on the R. H. S. is equal to

[

c J'y B,i(x = xp) (48)

which is interpreted as work performed by the current in moving the particles
from (xi, zi) to (x, z). Here j_ is the unperturbed current. In the limitx - o,
z - o by (43) and B, ~ o (33). Eq. (47) becomes

g § . =3 i
1/2p V" =1/2p Vg +By/87 + 2§ B (x - x)) (49)

We have replaced Bx (xi, zi) by B0 since we have shown that in the merging region
the Bx field energy becomes converted into particle kinetic energy.




4. MAGNETOTAIL OSCILLATIONS

Multiple onsets are a distinctive feature of magnetospheric substorms (Pytte
et all). In this section, a theory is derived to explain the observed intervals
between onsets. This theory predicts a proton collision frequency consistent with
(9). Thermal heating of the plasma sheet is also discussed.

It was shown in Section 2 that a substorm onset could lead to harmonic par-
ticle motion in the plasma sheet near the region of maximum compression. We
now argue that this motion couples to the tail lobes causing the tail to respond as

a complete system.
Compression of the tail magnetic field generates transverse compressional

waves across the tail lobes that obey the equation (Spitzerll).
2
0" E
e L oy (50)
Y v 02 at2
A
2
"E
1
% _2_X
VA ot
where V A is again the Alfyén velocity. Now
S B =l i(kz-wt)
z = cy/B, B, E e (51)
so that
‘T s EEVE & (52)

A

where k is the wave vector. This reduces upon integration to

° 2 .2
z = -k VAz (53)

which is again the equation for a harmonic oscillator. The reduction of the wave
equation to that of a harmonic oscillator is well known (Henley and Thirringls).
Equation (53) determines the equivalent force constant, Ky, in the tail lobes.

K, - K2 vi s (54)
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The wave-vector, k, will only have certain discrete values if the tail lobes
act as wave-guides (McClay and Radoskila). If ry is the height of the tail lobe in
the z-direction, then the compressional wave will reflect at the plasma sheet
boundary and return to the outer surface after a time, t, where

2r
t = —V o :% (55)
A A
or
wy = ==V, (56)
o
Now since
wp =k V, (57

(56) and (57) lead to

k=N (58)

where N is a positive integer. This simplified derivation leads to results identical
to those obtained from more sophisticated approaches (McClay and Radoskils)

Inserting (58) into (54), we have

2 .2
N ™ 2
KA = 3 Va (59)
o

The continual compression of the tail lobes by the solar wind ensures that the
natural frequencies represented (59) will always be present.
Now the oscillator strength in the plasma sheet as taken from Section 2 is
2

s o
Kp = @ 3 Va (60)

18. McClay, J.F., and Radoski, H.R. (1967) Hydromagnetic propagation in a
theta-model geomagnetic tail, J. Geophys. Res. 72:4525.
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The parameter o is a direct measure of the turbulence in the plasma sheet where
a small value of o implies a highly turbulent medium (that is, a high collision
frequency). The turbulent component does not transfer coherent momentum from
one tail lobe to another. The same values for B , p and r are assumed { hoth
tail lobes so that one has three harmonic oscillators strung in a line, with tne
outer two oscillators having identical force constants. Figure 3 shows the con-
ceived arrangement. This system is now solved in the limit of small amplitude

oscillations in Appendix B.

< | z
2 X
TL K
> 3
Bo > Ky

> 4

Figure 3. The Magnetotail Modeled as Three Cou-
pled Oscillators. Kp is determined from the eigen-
modes of transverse compressional waves in the
lobes. The current-carrying region is defined by ¢

Figure 4 shows the resulting eigenmodes. The first two modes correspond to
translation of the plasma sheet without involving any compression or expansion.
The last two modes do, however, involve compression and expansion of the plasma
sheet. Forn=10"cm™, B_ =10y, r_ = 20 R_ and with the assumption Kj, « K,
the positive root of (B8) becomes using (59)

wg = J 2K, = 0.24 N rad/sec (61)
or
Ty " 26 /N sec (62)

Gm'rett19 noted an oscillatory-type magnetic fluctuation in the plasma sheet with a

period on the order of 50 sec.

19, Garrett, H.B. (1972) ULF Magnetic Fluctuations in the Plasma Sheet as
Recorded by the Explorer 34 Satellite, Masters Thesis, Rice University.
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EIGENMODES OF THE COUPLED OSCILLATOR MODEL
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Figure 4. The Four Possible Eigenmodes of the Coupled Oscillator System Shown
in Figure 3

The fourth eigenmode shown in Figure 4 is the most interesting since it cor-
responds to both tail lobes moving toward z = 0. It is this mode that one expects
to be excited by the initial compression of the plasma sheet. The associated eigen-
frequency is the negative root of (B8) which goes to zero in the limit KF - 0 and is
a measure of the plasma sheet's compressibility compared with that of the tail
lobes.

This fact can be seen more clearly, if one solves for KF in terms of the eigen-
frequency w 4

(w3 - 2x,)
(wi ~ By |

(63)
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Now the average period between onsets as given by Pytte et all is 12. 5 min or

wy = 0.008 rad/sec (64)

The value of K A using the above values for the tail lobe parameters is 0. 029 so

that the conditions KA > wi is well satisfied. This simplifies (63) to

el
Kp = wy (65)

Equating this result to (24) allows the mean proton collision frequency to be solved

in terms of w, and v' (Eq. (16))

2
w
e S Ty [(U—?) J (66)

A Consistency Test: The plasma sheet is assumed to have the same represen
tative values as used for Eq. (9) with kT = 2 kev. This makes w' = 0,49 rad/sec.

Using (64) for Wys V takes on the value of
v = 1. 27 collisions/sec (67)

from (66) which is in excellent agreement with (9). Note that (67) was derived
from the pericd between onsets while (9) was derived from the resistivity relation.
This indicates an overall consistency of the theory as described in Sections 2 and 4.
Taking y on the order of one collision per second then o (see Eq. (16)) is equal
to 0.1 percent. Recall that o is the fraction of protons that execute at least one
period before being diverted by collisions. This is verification of the original
hypothesis that the harmonic component is a small fraction of the turbulent plasma

medium but plays an extremely important role in terms of the plasma sheet
dynamics.

Thermal Heating of the Plasma Sheet: We have seen that a very small fraction
of protons contribute to the coupling of the plasma sheet to the tail lobes. What
about the other protons that are more rapidly thermalized ?

It is well known that for a damped oscillator that the frequency for critical
damping is given by w_ = v/2. Note that in the present case w, = 0.53 rad/sec and
v =1 collision/sec which quantitatively consistent with critical damping. The rate
at which energy is being thermalized is, therefore, given by

g—tE'=-pZ'2u (68)
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per unit volume. The general solution for the critically damped case is
- /2t
z =z (1+y t/2) e (69)

where the initial conditions z = z z = 0att =0 have been used. Equation (69)
can be differentiated to obtain

t
RS -v/2
z=-w z te (70)

which when inserted into (68) and time-averaged over a quarter-cycle (t = /2w o)

gives
3 ;
2
-7 T

> g [1-e (“”T)] (71)
The contribution from all elements from z " 0 to 2, =1 /2 is included by
integration.

w2 13 0.61)
3 24w (72)

Inserting wy = 2/t V, into (72) gives the final result.

2
-4 ()

which is the rate of thermal heating per square centimeter. Multiplying by the
length and width of the tail over which heating is taking place gives the total power
input for one hemisphere. The damping of the J X B motion by collisions heats the
plasma sheet at a rate which is comparable to that expected if magnetic energy was
being annihilated a! the Alfvén speed.

Consider the analogous case of an electric motor in a viscuous medium where
an external ""battery' supplies the power to drive the armature. In the same
manner the source of the cross tail electric field supplies the power that heats the
plasma sheet by the above process. Note, however, that the rate of heating goes
as B 03 and, therefore, is controlled by the dayside merging rate. Heating by
collisional damping bythe J X B force will exceed joule heating if B > 22 v and the
parameter values given in Eq. (9) are retained.




5. SUMMARY AND CONCLUSIONS

In this model, we found that when the plasma sheet is compressed harmonic
motion across the plasma sheet is enhanced. This is true for both the fluid and
particle treatments. This harmonic component dynamically couples the plasma
sheet to the tail lobes and acts as a substorm triggering mechanism. The charac-
teristic frequency of the oscillation mode determines the period between onsets
which is a sensgitive measure of the mean proton collision frequency, v, in the
plasma sheet. Consistency was found between the collision frequency obtained
from the onset period and from the resistivity equation.

In the fluid approximation the plasma sheet can also be thermally heated under
compression in a manner analogous to that of a critically damped oscillator. This
occurs when f ~ 4VA/u.

Current fluctuations that arise from changes in single particle motion are
considered to drive B-field fluctuations. These B-field fluctuations can merge by
superposition if the corresponding deformation is severe enough and if merging is
taking place on the dayside. Subsequent relaxation of the merged lines accelerates
particles parallel to B.

We conclude that the above ideas provide a useful and viable model for the
onset of magnetospheric substorms.
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Appendix A

Single Particle Trajectories

In this appendix, single particle motion in the plasma sheet is examined. The
equations of motion (Speiserl) in the present system of coordinates is

X =0
3 2eB
e i . eE
y Tmec z 2 = (A1)
2eB
T o .
Z *Tmec 27

These hold for a linear z-dependence in Bx' By integration and substitution (A1)
can be rewritten (Speiserl) as

-eB

, & o 2 2, _eE
Y=Y * Tme (z -zo) =t (A2)

2eB eB
L e ] (] 2 _2 _eE .
Z = Tme 2 [' Tmc ¢ “ %) " m t+y°]

1. Speiser, T.W. (1965) Particle trajectories in model current sheets, 1, Analytic I
solutions, J. Geophys. Res. 19_:4219. {

‘ v
”? ’ 35
4




The case for long times was treated extensively by Speiser. 1 1n this limit

2e2EBot z
- Welnersi: xualt Stk g (A3)
Im~c

which is the equation for an oscillator with a time-dependent frequency. For com-
plateness, the numerical value of w is

w= 0.50 Vt rad/sec (A4)

where Bo =10y, E = 2mv/m and £ = 1500 km. This is analogous to the fluid
result in Section 2 of the front text.

In the alternate limit of zero electric field the limit (A3) does not exist and
(A1) reduces to

1 2eB° i
T e e (4%
2eB
e o .
T ime A
By defining
2
z_ eB
2 .. m [s)
52 e 2 vimc (46)

(A5) can be directly solved in terms of elliptic integrals and functions (Byrd and
Frledmanz) for three cases of interest.

-

Case I:

k2<1
Zm 2kvt

y=-—E( )m (AT)
k T

2kvt )

zZ =+ 2 cn , k

m (zm

2. Byrd, P.F. and Friedman, M.D. (1954)

Handbook of Elliptic Integrals for
Engineers and Physicists, Springer-Verlag Publ., Berﬁ'ﬁ.
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Case II:
.1
y = -2, tanh (2_zvt_) + vt (A8)
m
+2z
m
Z
)
cosh | 5—
m
Case III:
k2> 1
2k2vt 2
y:-sz(Z_)+2kvt-vt (A9)
m
2
2k vt 1
Z =4+ 2 dn ( 3 _)
m zm k

The expressions cn and dn are Jacobi elliptic functions. E(u) is the incomplete
elliptic integral of the second kind. The constants of integration were chosen so

that y and t equal zero when 2z = +2 .
The z-coordinate has the following possible values

Case I:
-zms z < zm
Case II:
Wil . z<0 or 0<zszm (A10)
Case III:
-zmszs- 1 --12-
k
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or

Note that protons can cross the z = 0 axis only for Case I (k2 < 1). See Figure Al.
The parameter k2 is inversely proportional to the total particle velocity v. There-
fore, Case III corresponds to low energy protons that gyrate solely on one side of
the z = 0 axis (Figure Ala). Case II corresponds to protons that start at Z = th
and asymptotically approach z = 0 as t - o (Figure Alb). Note that in this case
the proton is traveling in the +y direction at the total velocity. Case I corresponds
to protons starting at +2_ with sufficient energy to cross z = 0 (Figures Alc and
Ald).

POSSIBLE PROTON TRAJECTORIES IN THE PLASMA SHEET FOR PROTONS
PASSING THROUGH Z,,*750km B, =10y [f=I500km

-2

soo} 8, P
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Figure A1, Various Proton Trajectories that Illustrate the Several Regimes of V
as Shown in Figure A2, (a} Simple grad B drift at low energies; (b) Rapid loss &
selected proton energies that cause an opposing current along +y; (c) Zero drift

velocity; (d) Higher energy protons, that add to the current causing a pinch effect.
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The critical energy above which protons execute harmonic motion about z = 0
is found by setting (A6) to 1.0. For protons starting at z =1L /2 this condition
is simply

eBo 1
V=l/8Tc-!B' wc (All)

IfB =~ 10y thenw =~ 1 rad/sec and the critical energy is

15 ,2

2 1% ev (2 in cm) (A12)

E. =1/2mv” = 8.15%X 10"

cp

- The critical energy is a sensitive function of the plasma sheet thickness, £. Take

the thermal energy in the plasma sheet to be a couple of keV then for large
2 (e ~2.3 RE) Ecp = 17. 5 keV which says that few, if any, protons cross the
neutral sheet. Now compress the plasma sheet to £ ~ 1500 km, The critical
energy is now 0. 18 keV which implies a majority of protons execute harmonic
motion across the neutral sheet. This is clearly a single-particle counterpart to
the substorm triggering mechanism discussed in the text.

Further information can be obtained by defining the proton drift velocity in the
y-direction as

LA lim y/t (A13)

t - o0

For the three cases discussed

Case I:

| 3
E




b Here E(k) and E(1/k) are complete elliptic integrals of the second kind. K is the

3 complete elliptic integral of the first kind. Note that at k = 0. 90S the drift energy,
E', is zero. The drift velocity is plotted in Figure A2 for protons passing close

: to the plasma sheet-tail lobe interface. (zm = £/2). The plasma sheet thickness,
£, has been set equal to 1500 km. The drift velocity profile for other plasma sheet
thicknesses can be found directly from Figure A2 by recalling that the critical
energy scales as £-squared. See Eq. (A12).

PROTON DRIFT VELOCITY IN THE PLASMA SHEET AS A FUNCTION
OF ENERGY

300
+y TOWARDS DAWN B, =10y £=1500km
o Eeo Ecp®8.15%107° £% (ev)
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Figure A2. Proton Drift Velocity in the Plasma Sheet as a Function of Energy.
This curve scales as the square of the plasma sheet thickness. Protons that pass
through z, = 750 km (see Figure A1) have been specifically considered

Let us draw a physical scenario of a substorm onset based on the above re-
marks. The plasma sheet is again assumed to have a temperature of a couple keV.
During quiet time conditions (£ ~ 2.3 RE) E' is ~25 keV and from Figure A2 and
Figure Ala most if not all, the protons are drifting toward dawn (+y) without

crossing the neutral sheet. Now as the plasma sheet is compressed E' becomes
comparable to the thermal proton energy and some of these protons now gyrate

M i s Skl i




acress z = 0 and drift towards dusk (-y) (see Figure Ald). The protons that re-
verse their drift direction add to j_ and, therefore, by the Biot-Savat law cause
to continue decreasing. A decrease in £ lowers E' even further leading to an
equilibrium condition in which a further lowering of E' causes a negligible change
in j_. The conclusion is that the plasma sheet is unstable to this pinch effect once
E' becomes some multiple of the thermal energy. For illustration purposes we
set E' = 6 keV and solve for £ in Eq. (A6). The corresponding thickness is found
to be ~1.1 RE'

Figure A2 leads to one other final comment. The positive spike in the drift
velocity corresponds to protons that having started at z e +£ /2 asymptotically
approach but do not cross the positive y axis (Case II and Figure Alb). Therefore,
particles very close to Ecp (k2 = 1) will cause a positive current fluctuation. This
effect is identified as the source of the magnetic fluctuations described in Section 3.
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Appendix B

Solution of the Eigenmodes

The model is defined in Figure 3. The potential energy of the entire system
can be written as (Goldsteinl)

K
K 2 A
—(z3-zz-l) i 7 (24-za—ro)

Vv = 2

Xa
2

2
(22 -2z - ro) +
Using the usual definition
LS el

i=14

where the zero subscript denotes equilibrium values. Expression (B1l) then
simplifies to

2 2 2
V=1/2K, (ng = n))" +1/2 K (ng - ny)" + 1/2 K, (ny = ng)

1. Goldstein, H. (1957) Classical Mechanics, Addison-Wesley Publ. Co., Inc.,
Reading, MA.
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The familiar matrix form of IV - w2T| is shown in Figure Bl. The kinetic energy
tensor is treated as containing a unit mass density since p has been absorbed into

V2

re Solving for the eigenvalues of w2, we find that

2 2 2 2
(Ky + K -0 UKy -07) -Ky = + KK, -w (B4)
The positive root of this equation leads to
0 (w2 - ZKA) =0 (B5)

which has the obvious solutions

W' = ZKA (B6)

The minus root of (4B) leads to

& . o2 .
w = 2w (K+KA)+2KKA-0 (B7)

with the solutions

w? = (K + Ky £ K+ K32 (B8)

We now determine the eigenvectors for these four solutions of w2. The w2 =0
solution correspends to a uniform translation of the entire system and is of little
interest. Denoting Aij as the displacement of the ith node for the jth eigenmode,

we have for u2 =0,

A1 A " Az = Ay (B9)
For the second root (wg = ZKA) one finds

Ag=-Byy=-Agy=A,, (B10)

The third root, wg =K+ KA < (K2 1 Ki)l/z, leads to

-(K + (K2 + Kz)”z)
= =4 (B11)
33

A = A, =
23 KA 13
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g : Agz = A3

Finally, for the fourth root ui = K+K, - (K2 + l(f\)ll2 one has

1/2
K + (K% + K3)
Ay, - 9 Ayp = ~Agy (B12)
Ay = Ay

Each of the eigenvectors are of unit magnitude (Goldsteinl), that is

4
2 |
Ay =1 (B13)
i=1

This implies,

Ay, = 1/2 (B14)
A, =1)2 (B15)
K
i A
s | Sl s ‘j_z_f 172 (B16)
2[KA + K" - KYK™ + KA ]
K
A A (B17)

14 1/2
2 - R
2[KA+K -K»\/K +KA]

The four eigenmodes are schematically shown in Figure 4.




¢ MATRIX FOR THE EIGENMODES

K‘ -wz -KA (o) 0
E; -Ka Ky + K—w? -K 0
V-U'Tl =
0 -K KotK-w? =K,
.“ z
3 0 0 -KA KA-w.

Figure Bl. Energy Matrix for the Configuration Shown
in Figure 3.
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